
Meetup Symfony 13 décembre 2017 - LabSud

Les serveurs de Messages

Julien Vinber

@julienVinber sur Twitter
julien@vinber.fr

Développeur PHP / Symfony pour
2S2I solution

Principe

Principe

Publisher Exchange Queue
Consumer

Serveur de message

Et alors?

Asynchrone

Publication rapide

Conçu pour en prendre plein la gueule.

Performance

https://content.pivotal.io/blog/rabbitmq-hits-one-million-messages-per-second-on-google-compute-engine

Des protocoles

AMQP

OASIS 2012

Bien connue et utilisée avec PHP.

Plutôt orienter communication entre logiciel.

Fonctionnalité riche.

MQTT

OASIS 2014

Orienté vers IoT (MQ Telemetry Transport)

Protocole léger

Utiliser par Facebook Messenger

Cas d’utilisation

Cas d’utilisation

● Lancer des traitements de manière asynchrone, exemple envoyer des mail
● Lancer des traitements par lots, exemple l’enregistrement de log en base de données.
● Communication entre application

○ Sans passer par la lourdeur d’une base de données.
○ Sans être obligé d’être 100% up comme une API
○ Sans que l'application soit eux-mêmes des serveurs

● Séparer une application en micro tâche avec des temporalités différentes. (en PHP
compensé du multi-thread par exemple)

● Gérer de la scalabilité différente entre ces micros tâche.
● Envoyer des informations en consommant le moins de ressource possible pour l’IoT

Exemple de Code AMQP

php-amqplib/rabbitmq-bundle : config.yml

old_sound_rabbit_mq:

 connections:

 default:

 url: 'amqp://guest:password@localhost:5672/vhost?lazy=1&connection_timeout=6'

 producers:

 upload_picture:

 connection: default

 exchange_options: {name: 'upload-picture', type: direct}

 service_alias: my_app_service # no alias by default

 consumers:

 upload_picture:

 connection: default

 exchange_options: {name: 'upload-picture', type: direct}

 queue_options: {name: 'upload-picture'}

 callback: upload_picture_service

php-amqplib/rabbitmq-bundle : Publisher

public function indexAction($name)

{

 $msg = array('user_id' => 1235, 'image_path' => '/path/to/new/pic.png');

 $this->get('old_sound_rabbit_mq.upload_picture_producer')->publish(serialize($msg));

}

php-amqplib/rabbitmq-bundle : Subscriber

class UploadPictureConsumer implements ConsumerInterface

{

 public function execute(AMQPMessage $msg)

 {

 $isUploadSuccess = someUploadPictureMethod();

 if (!$isUploadSuccess) {

 return false;

 }

 }

}

En situation avec MQTT

